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Abstract
The derivation of dispersion relations for linear optical constants is considered
starting from the representation of an optical property as a Herglotz function.
One form of the Kramers–Kronig relations is determined directly and the second
is obtained using elementary properties of the Hilbert transform. Application
to the complex refractive index is considered.

PACS numbers: 02.30.Uu, 78.20.Ci

1. Introduction

There continues to be considerable interest in the refinement and utilization of dispersion
relations. Recent advances have included applications to optical properties [1–12], to problems
in acoustics [13–17] and other developments [18–22].

The historical approach to the derivation of dispersion relations for optical properties
relied on establishing that the complex optical function was analytic in the upper half of the
complex angular frequency plane. Utilizing physical models of an optical property allowed
the asymptotic behaviour of the optical property for large complex angular frequencies to
be determined. From the analyticity and asymptotic behaviour, a pair of Hilbert transform
relations can be established connecting the real and imaginary parts of a complex optical
property. The Hilbert transform pair is then converted to a positive frequency spectral range
by employing crossing symmetry conditions for the optical property. Details on the approach
can be found in [2].

The purpose of this paper is to examine the development of dispersion relations for optical
constants, starting from the properties of Herglotz functions. The standard approach to the
derivation of the dispersion relations proceeds directly from the notion of causality and a
contour integration technique. The causality requirement also enters the present work, by
defining the domain for which the optical property is an analytic function.
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2. Some basic properties of the Hilbert transform

A number of properties of the Hilbert transform will be required in the following, and these
are collected together in this section. Discussion of these results can be found in a number of
sources, see, for example, [23, 24]. The Hilbert transform on R, the real line, is defined by

Hf (x) = 1

π
P

∫ ∞

−∞

f (y) dy

x − y
, for x ∈ R, (1)

where P signifies that the Cauchy principal value is taken. The Hilbert transform operator will
be denoted by H throughout this work. Equation (1) is often written in the form

Hf (x) = lim
ε→0+

Hεf (x), (2)

where

Hεf (x) = 1

π

∫
|x−t |>ε

f (t)

x − t
dt . (3)

The function Hεf is sometimes referred to as the truncated Hilbert transform of f. From the
definition in equation (1), it is straightforward to show that the Hilbert transform of an even
function yields an odd function, and the Hilbert transform of an odd function gives an even
function. This is the parity property of the Hilbert transform operator.

The class of Lebesgue integrable functions on the real line will be denoted by Lp(R) and
abbreviated when there is no risk of confusion by Lp. If f belongs to the class Lp(R) for
1 < p < ∞, then∫ ∞

−∞
|Hf (x)|p dx � {�p}p

∫ ∞

−∞
|f (x)|p dx, (4)

where �p is the Riesz constant, which depends only on p. For p = 2,�p = 1 and equality
holds in equation (4). The best value of the constant �p for 1 < p < ∞ is known to be

�p =
{

tan
(

π
2p

)
, 1 < p � 2

cot
(

π
2p

)
, 2 � p < ∞.

(5)

The constant is best in the sense that for any particular f belonging to the class Lp(R), there
is no constant less than �p for which equation (4) holds true.

An important property of the Hilbert transform is the inversion property, also referred to
as the iteration property. If Hf (x) = g(x) implies Hg(x) = −f (x), then

H 2f (x) ≡ H(Hf )(x) = −f (x), a.e. (6)

The abbreviation a.e. stands for almost everywhere. If f ∈ Lp for p > 1, then g ≡ Hf ∈ Lp.

Using this result, it is clear that functions belonging to the class Lp (for p > 1) satisfy
equation (6). If an additional assumption is made for the case p = 1, that is, if f ∈ L and
Hf ∈ L, then functions of the class L are also included. It is not difficult to find examples for
which f ∈ L but Hf /∈ L, hence the requirement in the preceding statement that both f and
Hf ∈ L.

If g(x) = Hf (x), then

H {xf (x)} = xg(x) − 1

π

∫ ∞

−∞
f (t) dt, (7)

which is the moment formula for the Hilbert transform.
An important example is the Hilbert transform of a constant c. The result is

Hc = 0. (8)
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3. Representation of Herglotz functions

In this section an alternative approach to the derivation of the Kramers–Kronig relations is
considered. The derivation is carried forward with a fairly general optical property O, with
the principal restriction being that the imaginary part of O satisfies the condition

ImO(ω) � 0. (9)

Since the imaginary component of O typically represents the dissipative behaviour of the
system, then the preceding result is satisfied. Some particular choices for the function O will
be considered in the following section. The approach revolves around the use of Herglotz
functions, which are now introduced.

The following result of Herglotz [25] is key in what follows. If g(w) is analytic in
|w| < 1, and Im g(w) � 0 in the same domain, then the function g(w) admits the integral
representation

g(w) = i
∫ 2π

0

eiθ + w

eiθ − w
dβ(θ) + C, (10)

where β(θ) is a non-decreasing bounded function and C is a real constant. A function satisfying
these two conditions is called a Herglotz function. A conformal mapping using

z = i
1 + w

1 − w
(11)

converts the interior of the disc to the upper half complex plane. Employing the change of
variables

t = −cot
θ

2
,

t − i

t + i
= eiθ , (12)

using f (z) = g(w) and α(t) = β(θ), leads to the result

f (z) = Az +
∫ ∞

−∞

1 + tz

t − z
dα(t) + C, (13)

where A is a positive real constant. The first term on the right-hand side of this result arises
from the possible jump of β(θ) at θ = 0 and θ = 2π ; see [26–28] for some further comments
on the derivation. Additional background on Herglotz functions can be found in the sources
[29–32]. The result in equation (13) is used to arrive at a Kramers–Kronig connection between
the real and imaginary parts of a general linear optical property. For general background on
the Kramers–Kronig relations for optical properties, the reader is directed to the books [2, 12].

Let ωz = ωr + iωi denote a complex angular frequency. If O(ωz) satisfies equation (9)
and is analytic in the upper half complex frequency plane, then it is a Herglotz function, so
that

O(ωz) = Aωz +
∫ ∞

−∞

1 + ω′ωz

ω′ − ωz

dα(ω′) + C

= A(ωr + iωi) + C +
∫ ∞

−∞

[
(1 + ω′ωr)(ω

′ − ωr) − ω′ω2
i

]
+ iωi(ω

′2 + 1)

(ω′ − ωr)2 + ω2
i

dα(ω′). (14)

The effects of spatial dispersion for the optical property are ignored. Furthermore,
consideration is restricted to isotropic media; the non-isotropic case can be dealt with in
a similar fashion by considering the appropriate tensor components of the optical property. In
equation (14) and the following development, the frequency factors are rendered dimensionless
by dividing each by 1 Hz, when this is necessary for dimensional considerations. If the
constraint that α(ω) is differentiable everywhere is imposed, then the Stieltjes integral can be
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written using dα(ω) = α′(ω) dω. Taking the limit ωi → 0, using the definition of the Dirac
delta distribution

πδ(x) = lim
a→0

a

a2 + x2
, (15)

and denoting ωr by ω, equation (14) can be recast as

O(ω) = Aω + C + lim
ωi→0

∫ ∞

−∞

[
(1 + ω′ω)(ω′ − ω) − ω′ω2

i

]
(ω′ − ω)2 + ω2

i

α′(ω′) dω′

+ lim
ωi→0

∫ ∞

−∞

iωi(ω
′2 + 1)

(ω′ − ω)2 + ω2
i

α′(ω′) dω′

= Aω + C + P

∫ ∞

−∞

1 + ω′ω
ω′ − ω

α′(ω′) dω′

+ iπ
∫ ∞

−∞
δ(ω′ − ω)[ω′2 + 1]α′(ω′) dω′

= Aω + C + P

∫ ∞

−∞

1 + ω′ω
ω′ − ω

α′(ω′) dω′ + iπ(1 + ω2)α′(ω). (16)

The imaginary part of this equation yields

ImO(ω) = π(1 + ω2)α′(ω). (17)

From the preceding formula α′(ω) is determined, and then inserting the result into
equation (16) leads to

ReO(ω) = Aω + C − 1

π
P

∫ ∞

−∞

(1 + ω′ω) ImO(ω′) dω′

(ω − ω′)(1 + ω′2)
. (18)

Since only continuous linear optical properties are of interest in the present discussion,
equation (17) provides the necessary justification for imposing the previously employed
constraint that α(ω) is differentiable everywhere.

Suppose that O(ω) satisfies a crossing symmetry constraint of the form

O(−ω) = −O∗(ω), (19)

where ∗ denotes the complex conjugate. The imaginary component of O(ω) is therefore an
even function and the real part is an odd function. Equation (18) can be recast as

ReO(ω) = Aω + C − 2ω

π
P

∫ ∞

0

ImO(ω′) dω′

ω2 − ω′2 . (20)

If instead of equation (19) assume O(ω) satisfies the crossing symmetry constraint

O(−ω) = O∗(ω), (21)

then equation (18) reduces to

ReO(ω) = Aω + C − 2(1 + ω2)

π
P

∫ ∞

0

ω′ ImO(ω′) dω′

(ω2 − ω′2)(1 + ω′2)
. (22)

Resolving the integrand of the last integral into partial fractions leads to

ReO(ω) = Aω + C − 2

π

∫ ∞

0

ω′ ImO(ω′) dω′

1 + ω′2 − 2

π
P

∫ ∞

0

ω′ ImO(ω′) dω′

ω2 − ω′2 . (23)

The constants in equation (20) can be fixed as follows. The limit ω → 0 leads to

C = ReO(0), (24)
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and dividing both sides of equation (20) by ω and taking the limit ω → ∞ gives

A = ReO(ω)

ω

∣∣∣∣
ω→∞

. (25)

Inserting these results into equation (20) leads to

Re

{
O(ω) − O(0) − ω

{
O(ω)

ω

}
ω→∞

}
= −2ω

π
P

∫ ∞

0

ImO(ω′) dω′

ω2 − ω′2 . (26)

In a similar manner equation (23) can be recast as

Re

{
O(ω) − O(0) − ω

{
O(ω)

ω

}
ω→∞

}

= − 2

π
P

∫ ∞

0

ω′ ImO(ω′) dω′

ω2 − ω′2 − 2

π
P

∫ ∞

0

ImO(ω′) dω′

ω′

= − 2ω2

π
P

∫ ∞

0

ImO(ω′) dω′

ω′(ω2 − ω′2)
, (27)

and it is assumed that the integral P
∫ ∞

0
ImO(ω′) dω′

ω′ is convergent.
In an important paper, Weaver and Pao [33] considered in a similar analysis the use of

Herglotz functions for the discussion of the complex wave number in linear wave propagation
in homogeneous and inhomogeneous media. In their work, these authors point out that it is not
clear why the α term should be treated as differentiable. This would particularly be the case for
inhomogeneous media. Another issue raised by these authors is that only one of the Kramers–
Kronig pairs is obtained from this type of analysis. Using a lengthy complex variable analysis,
they obtain the second dispersion relationship for the complex wave number. In the following
section, we show that some basic properties of the Hilbert transform can be employed to
obtain the second dispersion relationship in a straightforward manner. A justification for the
differentiability of the α function is also given.

4. Applications

This section considers some applications of the results just obtained. The focus will be linear
optical properties, of which the refractive index is employed as a representative example.
An identical approach can be employed to obtain ordinary dispersion relations for nonlinear
optical properties in the case of harmonic generation. For the case of multiple-variable
dispersion relations for nonlinear optical properties, the situation becomes rather complicated,
and this topic is not pursued in the present work. The reader interested in investigating the
approaches to dispersion relations for nonlinear properties might consult the references [2, 12,
34–44, 46, 47].

Let O(ω) = N(ω) − 1, where N(ω) is the complex refractive index, which is expressed
in terms of the normal refractive index n(ω) by the relation N(ω) = n(ω) + iκ(ω) and
κ(ω) determines the dissipation in the system. The complex refractive index is analytic
in the upper half complex frequency plane, and ImO(ω) = κ(ω), which satisfies equation
(9). With this particular choice of O(ω), it is clear from equation (17) why α(ω) can be
treated as a differentiable function, since κ(ω) is differentiable for all angular frequencies
for an insulator. The exceptional point for conductors is ω = 0. A similar situation applies
for the choices given later for O(ω); however the point ω = 0 for the latter two cases no
longer presents any difficulties for conductors. The function α′ is positive because of energy
dissipation in the system, a result following directly from equation (17). From the result that
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ReO(ω) = n(ω) − 1, which has the asymptotic behaviour n(ω) − 1 = O(ω−2) as ω → ∞,

then

ω−1 ReO(ω)|ω→∞ = 0. (28)

For the choice O(ω) = N(ω) − 1, the crossing symmetry condition given by equation (21)
applies, and from equation (27) it follows that

n(ω) − n(0) = − 2

π
P

∫ ∞

0

ω′κ(ω′) dω′

ω2 − ω′2 − 2

π

∫ ∞

0

κ(ω′) dω′

ω′ . (29)

In this form, the result applies to insulators; conductors are excluded because of the behaviour
of κ(ω) as ω → 0. Equation (29) can be rewritten as

n(ω) − n(0) = −2ω2

π
P

∫ ∞

0

κ(ω′) dω′

ω′(ω2 − ω′2)
, (30)

which is a single subtracted form of the dispersion relation for the refractive index. Singly,
and more generally, multiply-subtracted dispersion relations lead to improved convergence for
the numerical evaluation of optical constants [12].

Consider the choice O(ω) = ωN(ω), then equation (9) is satisfied, ReO(0) = 0
and ω−1 ReO(ω)|ω→∞ = limω→∞n(ω) = 1. Since equation (19) applies in this case,
equation (26) leads to

n(ω) − 1 = − 2

π
P

∫ ∞

0

ω′κ(ω′) dω′

ω2 − ω′2 , (31)

which is the standard form of the Kramers–Kronig connection relating n(ω) − 1 to κ(ω).
The alternative choice O(ω) = ω{N(ω) − 1} satisfies equation (9), ReO(0) = 0 and
ω−1 ReO(ω)|ω→∞ = 0, with the result that equation (31) is obtained from equation (26).

The Kramers–Kronig relations come in pairs, and to obtain the second formula the
following straightforward approach using some of the basic properties of the Hilbert transform
can be employed. Equation (18) can be written as

ReO(ω) = Aω + C − Hf (ω) − ωHg(ω), (32)

with

f (ω) = ImO(ω)

(1 + ω2)
, (33)

and

g(ω) = ωf (ω). (34)

The following constraints are imposed: (i) A = 0, which supposes that ReO(ω) has a suitable
asymptotic behaviour as ω → ∞; (ii) O(−ω) = O∗(ω), which is a common situation for
many optical properties; (iii) g(t) ∈ Lp(R) for 1 < p < ∞ and (iv) ReO(ω) ∈ Lq(R)

for 1 � q < ∞. The latter requirement is sufficient to ensure that the Hilbert transform of
ReO(ω) exists; in order to ensure that it is bounded, the condition on q must be changed to
1 < q < ∞. From equation (32) it follows that

H ReO(ω) = H [C] − H 2f (ω) − H [ωHg(ω)]. (35)

Let h(ω) = Hg(ω), then the moment formula of the Hilbert transform can be applied to give

H [ωh(ω)] = ωHh(ω) − 1

π

∫ ∞

−∞
h(ω) dω. (36)

If condition (ii) applies, then ImO(ω) is an odd function and so from equations (33) and (34)
g(ω) is an even function. Recalling that the Hilbert transform of an even function is an odd
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function, then h(ω) is odd, and so equation (36) simplifies to give

H [ωh(ω)] = ωH 2g(ω). (37)

Condition (iii) allows the inversion formula of the Hilbert transform to be applied as

H 2f (ω) = −f (ω), H 2g(ω) = −g(ω), (38)

and recalling that the Hilbert transform of a constant is zero, equation (8), then equation (35)
can be rewritten as

H ReO(ω) = f (ω) + ωg(ω), (39)

which simplifies on inserting the definitions of f and g to yield

ImO(ω) = H ReO(ω). (40)

Employing condition (ii) gives

ImO(ω) = 2ω

π
P

∫ ∞

0

ReO(ω′) dω′

ω2 − ω′2 , (41)

which is the standard form of one of the Kramers–Kronig relations.
The second formula of the Kramers–Kronig pair can be obtained in a different manner.

On taking the real part of equation (16), multiplying both sides of the resulting equation by
(1 + ω2)−1 and applying the Hilbert transform yields

ImO(ω) = c1 + c2ω + H [ReO(ω)], (42)

where c1 and c2 are constants. These constants can be fixed in the same manner as described
previously. If equation (19) holds, then

ImO(ω) = ImO(0) + ω

[
ImO(ω)

ω

]
ω→∞

+
2

π
P

∫ ∞

0
ω′ ReO(ω′)

{
1

ω2 − ω′2 +
1

ω′2

}
dω′,

(43)

which assumes that
∫ ∞

0
ReO(ω′) dω′

ω′ is convergent, and if equation (21) applies, then

ImO(ω) = ImO(0) + ω

[
ImO(ω)

ω

]
ω→∞

+
2ω

π
P

∫ ∞

0

ReO(ω′) dω′

ω2 − ω′2 , (44)

which assumes that limω→0
{
ωP

∫ ∞
0

ReO(ω′) dω′
ω2−ω′2

}
is zero.

As an application of equation (41) let

O(ω) = N(ω) − 1, (45)

and note that

ω−1 ReO(ω)|ω→∞ = ω−1{n(ω) − 1}|ω→∞ = 0. (46)

Conditions (i)–(iv) are satisfied, so that equation (41) yields

κ(ω) = 2ω

π
P

∫ ∞

0

{n(ω′) − 1} dω′

ω2 − ω′2 , (47)

which is the well-known Kramers–Kronig connection between κ(ω) and n(ω) − 1.
To treat the nonlinear case for harmonic generation the function O(ω) is identified with

the nth order susceptibility χ(n)(p1ω,p2ω, . . . , pnω), where pk are suitably selected integer
values. The development of dispersion relations for χ(n)(p1ω,p2ω, . . . , pnω) runs along the
same lines as discussed for the refractive index.
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5. Discussion

The reader may have wondered if this approach to the dispersion relations for the optical
constants avoids the use of causal arguments. The answer is no, since it is necessary to work
with an optical function that is analytic in the upper half of the complex frequency plane. The
analyticity of the optical functions follows from a causality argument [47]. In the case of a
choice like O(ω) = N(ω) − 1, a much more involved argument is required, since N(ω) − 1
does not correspond to any physically realizable response function [32].

Appropriate knowledge of the asymptotic behaviour of the optical property as ω → ∞
is also required. Realistic physical models of the behaviour of the optical properties provide
the necessary information on the real frequency axis. The Phragmén–Lindelöf theorem of
complex analysis allows the asymptotic behaviour in the upper half of the complex frequency
plane to be determined from the behaviour on the real axis.

By appropriate selection of the function O, dispersion relations for powers of optical
properties can be established. The resulting formulae typically have less practical value for
data analysis, since the real and imaginary components of the optical constant are intermingled.
However, such formulae can be utilized to derive sum rule constraints for optical properties.

The conformal transformation step taken at equation (11) can be circumvented. It
is possible to opt for a trigonometric expansion approach, leading to a conjugate series
representation for the real and imaginary parts of an optical property [48–50].

In summary, an alternative to the standard approach of using contour integration and the
Cauchy integral formula for deriving the Kramers–Kronig relations for linear optical properties
has been considered. The derivation still exploits the analytic behaviour of the property under
consideration. Only elementary properties of the Hilbert transform are required to obtain the
second formula of the Kramers–Kronig pair, from the Herglotz representation of the optical
property as a Herglotz function.

Acknowledgment

Partial support from the Petroleum Research Fund of the American Chemical Society is greatly
appreciated.

References

[1] Palmer K F, Williams M Z and Budde B A 1998 Appl. Opt. 37 2660
[2] Peiponen K-E, Vartiainen E M and Asakura T 1999 Dispersion, Complex Analysis and Optical Spectroscopy

(Berlin: Springer)
[3] Peiponen K-E and Saarinen J J 2002 Phys. Rev. A 65 063810
[4] Lucarini V and Peiponen K-E 2003 J. Chem. Phys. 119 620
[5] Lucarini V, Saarinen J J and Peiponen K-E 2003 Opt. Commun 218 409
[6] Lucarini V, Saarinen J J and Peiponen K-E 2003 J. Chem. Phys. 119 11095
[7] Peiponen K-E, Lucarini V, Saarinen J J and Vartiainen E 2004 Appl. Spectrosc. 58 499
[8] Peiponen K-E, Lucarini V, Vartiainen E M and Saarinen J J 2004 Eur. Phys. J. B 41 61
[9] Peiponen K-E, Saarinen J J and Svirko Y 2004 Phys. Rev. A 65 043818

[10] Lucarini V, Ino Y, Peiponen K-E and Kuwata-Gonokami M 2005 Phys. Rev. B 72 125107
[11] Peiponen K-E, Gornov E, Svirko Y, Ino Y, Kuwata-Gonokami M and Lucarini V 2005 Phys. Rev. B 72 245109
[12] Lucarini V, Saarinen J J, Peiponen K-E and Vartiainen E M 2005 Kramers–Kronig Relations in Optical Materials

Research (Berlin: Springer)
[13] Waters K R, Hughes M S, Mobley J, Brandenburger G H and Miller J G 2000 J. Acoust. Soc. Am. 108 556
[14] Waters K R, Hughes M S, Brandenburger G H and Miller J G 2000 J. Acoust. Soc. Am. 108 2114
[15] Waters K R, Hughes M S, Mobley J and Miller J G 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 68
[16] Waters K R, Mobley J and Miller J G 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 822

http://dx.doi.org/10.1103/PhysRevA.65.063810
http://dx.doi.org/10.1063/1.1578625
http://dx.doi.org/10.1016/S0030-4018(03)01259-8
http://dx.doi.org/10.1063/1.1623477
http://dx.doi.org/10.1366/000370204774103309
http://dx.doi.org/10.1140/epjb/e2004-00294-6
http://dx.doi.org/10.1103/PhysRevA.69.043818
http://dx.doi.org/10.1103/PhysRevB.72.125107
http://dx.doi.org/10.1103/PhysRevB.72.245109
http://dx.doi.org/10.1121/1.429586
http://dx.doi.org/10.1121/1.1315294
http://dx.doi.org/10.1109/TUFFC.2003.1176526
http://dx.doi.org/10.1109/TUFFC.2005.1503968


Alternative approach to the derivation of dispersion relations for optical constants 10435

[17] Mobley J, Waters K R and Miller J G 2005 Phys. Rev. E 72 016604
[18] Dienstfrey A and Greengard L 2001 Inverse Prob. 17 1307
[19] King F W 2002 J. Opt. Soc. Am. B 19 2427
[20] Lichvár P, Liška M and Galusek D 2002 CERAM., Silik. 46 25
[21] Wang L J 2002 Opt. Commun. 213 27
[22] Debiais G 2002 Contemporary Problems in Mathematical Physics ed J Govaerts, M N Hounkonnou and

A Z Msezane (Englewood Cliffs, NJ: World Scientific) p 233
[23] Butzer P L and Nessel R J 1971 Fourier Analysis and Approximation, Voume 1 One-Dimensional Theory (New

York: Academic)
[24] Pandey J N 1996 The Hilbert Transform of Schwartz Distributions and Applications (New York: Wiley)
[25] Herglotz G 1911 Berichte über die Verhandlungen der Königlich Sächsischen Gessellschaft der Wissenschaften
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